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Full-Wave Analysis of Coupled
Perfectly Conducting Wires
in a Multilayered Medium

Niels Faché, Frank Olyslager, Student Member, IEEE, and Daniél De Zutter

Abstract —This paper presents a full-wave analysis of coupled per-
fectly conducting cylindrical wires in a multilayered dielectric medium.
The analysis is based on a Fourier series expansion of the unknown
surface currents on each wire and on an integral equation for the
longitudinal field on the wires. The calculations are not restricted to the
propagation constants of the different modes, but explicit results are
presented for the impedances associated with each wire and each
eigenmode and this as a function of frequency. Propagation constants,
longitudinal currents on the wires and impedances lead to a complete
circuit equivalent for the structures being considered.

1. INTRODUCTION

ICROSTRIPS and striplines play an important role in

high-speed digital as well as high-frequency analog
applications. Much theoretical effort has been expended in
modeling these structures both in the quasi-TEM limit [1]
and in the full-wave regime [2]~[4], [11]. An alternative to
printed circuit lines is the use of discrete wire technology.
Two important applications of this technique are the multi-
wire and microwire boards which allow the controlled
impedance transport of very high speed signals in very dense
circuits [5], [6].

This paper presents a full-wave analysis of coupled wire
transmission lines in a multilayered dielectric medium. We
first determine the propagation constants of the fundamental
eigenmodes associated with the coupled wires. In a second
step, special emphasis is placed on the determination of the
impedances of these modes and their frequency dependence.
To this end, it is necessary to determine the total complex
power propagated by each mode. To the best of the authors’
knowledge, this is the first time that frequency-dependent
impedance results are presented for wire structures. Combin-
ing the knowledge of propagation constants and impedances
as a function of frequency and of the values of the total
longitudinal currents on each wire, it becomes possible to
derive a complete coupled transmission line equivalent cir-
cuit for the configurations under study. The results pre-
sented in this paper constitute a substantial extension of the
restricted analysis presented in [7]. For quasi-TEM results on
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a single wire and on two coupled wires, the reader is referred
to [8] and [9].

II. GEOMETRY OF THE PROBLEM

The geometry of the cross section of the multilayered
interconnection structure under consideration is shown in
Fig. 1. It consists of L homogeneous layers with arbitrary
thickness d;, permittivity €, and permeability u; (i=
1,- -+, L). We distinguish structures of the covered type (Fig.
1(a)), of the semiopen type (Fig. 1(b)) and of the open type
(Fig. 1(c)). The metallic planes are perfectly conducting. This
is also the case for the W interconnection wires. Each wire is
fully embedded in a single layer. The coordinate system is
indicated on the figure. In what follows, we will often refer
to the’ interaction between two wires. Two such wires are
shown in Fig. 2. One wire will be called the source wire. This
wire and the layer in which it is located are indicated by the
letters s and ¢ respectively. The second will be called the
observation wire o located in layer p.

III. GeENErRAL OUTLINE OF THE SOLUTION

The purpose of this paper is to calculate the W lowest
eigenmodes associated with the interconnection structure
consisting of W wires embedded in a multilayered medium.
For one such eigenmode, all field components depend upon
x through the common phase factor exp(— jBx), where B
represents the propagation constant. The field can be written
as :

e(x,y,z)=E(y,z)exp(— jBx)

h(x,y,z)=H(y,z)exp(— jBx). D
The common time dependence exp(jwt) and the common
phase factor exp(— jBx) are suppressed throughout this
paper. As for the single wire [7], the determination of an
eigenmode starts from the surface currents on each wire. In
what follows, we will regard the problem as the superposition
of the action of W source wires. The surface currents on
each source wire are J, (r;,¢.). As shown in Fig. 2, we refer
these surface currents to a local coordinate system (r,,é,)
associated with each wire. For each source wire we first
determine .the fields associated with the as yet unknown
surface currents on that wire, These fields are found as the
sum of two contributions. A first contribution, the incoming
fields E/"(y, z;J,) and H/"(y, z; J,), are those fields that we
find when the source wire s under consideration is placed in
a homogeneous space with the same electric and magnetic
properties as the layer ¢ in which the source wire is located.
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Fig. 1. Cross section of the coupled wire transmission lines in a

multilayered medium: (a) closed structure; (b) semi-open structure; (c)
open structure.
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Fig. 2. Excitation and observation wire and associated coordinates.

In this operation the original unknown surface currents J, ;
and J; ; are left unaltered. In order to emphasize the fact
that these incoming fields are determined in the layer ¢, we
use the subscript ¢ with these incoming fields. The second
contribution is found by taking into account the layered
nature of the original medium. This is done by considering
the scattering of the incoming fields by the layered medium.
This results in the scattered fields Ef(y, z;J,) and
H*(y,z; J,). The subscript i now indicates the fact that these
scattered fields exist in each layer i of the medium (i =
1,---,L). In a last step, the superposition of the fields from
all the wires yields the total electric and magnetic fields
everywhere. In each layer i these total fields are given by

s=W
EP(y,2)= X (8,,E™(v,2;0,) + Ef(y,2;J,))
s=1
s=W .
H(y,z2)= ¥ (8, H"(y,z;J)+ H*(y,2;J,)). (2)

s=1
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The summation in (2) extends over all wires. The symbol 8, ;
is the well-known Kronecker delta. In order to finally deter-
mine the eigenmodes and associated eigenvalues we impose
the boundary conditions on each wire surface, using
Galerkin’s method. This leads to the relevant integral equa-
tion for the eigenmodes of the configuration under consider-
ation. In the next section some details are given on each step
in the calculation.

IV. IncoMING FIeLDS IN THE Space DoMAIN

Using Green’s theorem and the Green’s function for a
homogeneous space with the same properties as the layer ¢
in which one particular source wire s is located, the longitu-
dinal x components of the incoming electric and magnetic
field can be written as [7], [10]

aE;c,)t(awd)s)

G
! ar

)

Eir,lt("):/oz” ]asd¢s

s

and
f 2w aG[
Hxl?t(r) = —'I;) I:th?t(as’qs:)y]as d¢s (4)

with r = yu, + zu, and a the radius of the source wire. The
superscript “to” describes a total field component. The inte-
gration in (3) and (4) extends over the circumference of wire
s, and G, is given by

G'%Héz)(vtlas-rl) (5)
where a; is a running integration point on the wire surface
and

'Ytz = wZEtIJ't - B (6)

The quantity v, is defined as the root of y? with a nonnega-
tive real part and a nonpositive imaginary part. H{® repre-
sents the Hankel function of the second kind and of order
zero. As in [7], it turns out that all field components of the
incoming as well as of the scattered fields can be expressed
in terms of the x components of these fields. From (3) and
(4) it is clear that 6E;°, /dr, and H S, on the wire surface are
the actual basic unknowns of our problem. These quantities
are of course directly related to the surface currents J, ; and
Jy s and it is only a matter of convenience which set of
unknowns is used. We expand the unknown functions in an
angular Fourier series:

0E®,(a,) i

—T— - Z An,sexP(jn¢s) (7)
r‘s‘ n=—w
and
n=-+w
H(a)= Y B, exp(jnd,). (8)
n=—w
Inserting (7) and (8) into (3) and (4) leads to [7]
nh=+w
Ef(r)= ¥ CpHP(v,r)exp(ind,)
n=-—wo
. n=+w
H'(r)= X D, H?(vr)exp(jnd,) 9
n=—0o0

where H/? represents the Hankel function of the second
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kind and of order r, and r is now given in reference to its
coordinates r, and ¢, in the local coordinate system of wire
s. In addition,

Cn,s =

n,s

_Jagr
Dn,s 2

where J, represents the Bessel function of order n.

= In(7:45) By s (10)

V. INncoMING FIELDS IN THE SPECTRAL DoOMAIN

In the above section we have calculated the incoming
fields originating from one particular source wire s. To
determine the total fields at the surface of the wires we have
to calculate the contribution of each source wire to the total
field at the surface of any other wire. In what follows, such a
wire is indicated as observation wire o. If the observation
wire is located in the same layer as the source wire, the
incoming fields contribute directly to the total fields at the
observation wire. This contribution will be discussed in Sec-
tion VL. If the observation wire is located in a different layer,
the scattering of the incoming field must be taken into
account. These scattered fields also contribute to the total
fields at the source wire itself. Scattered fields will be dis-
cussed in Section VII. In both cases we need the incoming
fields in the spectral domain. To this end we introduce the
spatial Fourier transformation of all fields with respect to
the lateral y direction. For the incoming fields (9) this
spatial Fourier transformation can be performed analytically.
We refer the reader to [7, appendix II] for details on the
calculations:

o explal,(z—z,)+jk,y
Ex,t(kyaz)= [ t Ft 5 y S]
n=+o —ak n/2
“ L (/7)) c,,s(” ,j)
" exp|al(z—z,) + jk,y,
H,%\(ky.z)= L% L e
n=te T,—ak n/2
- L (/7)) D, (*—_y) (11)
ne — T+ ak

where y, and z, are indicated in Fig. 2. Below the source

wire o takes the value 1 and above the source wire the value®

—1. In (11), k, is the spatial Fourier variable and T is
defined as the root with nonnegative real and nonnegative
imaginary parts of (k% — /).

V1. IncoMING FiELDS AT AN OBSERVATION WIRE
LOCATED IN THE SOURCE LAYER

The actual situation is depicted in Fig. 3. The figure shows
two wires. The rightmost wire is the source wire s. The
leftmost wire is an observation wire o located in the same
layer. Instead of using the original (r,, ¢,) coordinate system

on each wire, as shown in Fig. 3 we introduce new (y', z')

axes with their origin at the center of the source wire. The z’
axis is directed from the center of the source wire to the
center of the observation wire. The new polar angles are now
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Fig. 3. Coordinate system used in the calculation of the incoming field
at an observation wire located in the source layer.

measured with respect to the y’ axis:

¢'_¢s so and ¢¢,;=¢o—q)s,o' (12)
The subscript s still indicates the source wire, while the
subscript o will be used to indicate an observation wire. The
angle &, is defined in Fig. 3. The x component of the

incoming electric field (9) can be rewritten as

n=-+w

Emt(r)_ Z Cn sexp(]n

n=—oo

5.0) HD(v,r,) exp (ing}).
(13)
As in the above section on the spectral incoming fields, we

calculate the spatial Fourier transformation of (13) but now
with respect to the y’ coordinate. This leads to

) B

n=-—w

exp[~T,(z'—

E;',‘,(k}’,,z’)= T
t

, n/2
exo( in® T, +k;
p(]n S,O) r_k, M (14)
¢ y

We have used the spectral variable &} to emphasize the fact
that the transformation applies to the y’ coordinate. The
distance d,, between the centers of the source and the

observation wire is given by

1,2
ds,o=[(yS—yo)2+(zs_zo)2] ’ (15)
Expression (14) allows us to explicitly determine the spatial
fields at the observation wire. Analogous reasoning can be
applied to the magnetic field. If we write the longitudinal
fields on the observation wire caused by the incoming fields
of the source wire in the following way:

n= <4
EX(ro)= X Ep,exp(ind,)
n=—ow
. n=+ow
H,\!?I(ro)= E Fno,sexP(jn¢o) (16)
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the Fourier coefficients are found to be
Er?,s = eXp( - jnq)s o Ftds,o)Jn(ytao)

g {mf [ ) /(7))

— m=—ow

Ft _ ky (m—n)/2 e -
T, -k, y (17
and
Fno,szexD(_jn(Dso t so)J (Yt 0)
m=+wx
STVE (/)]
m=—co
Ft - ky (m—n)/2 " 5
T, -k, v (18)

the notation r, indicates a point on the observation wire and

o is the radlus of that wire. It must be emphasized that £, |
depends upon all unknown coefficients 4, ; (eq. (7)) and
FY upon all B, ; values (eq. (8)), where m =0, +1, +2,

VII. ScaTtreErep FiELDS

In order to find the total fields at the surface of each wire,
we finally have to determine the contribution from the
scattered fields. Here two different situations have to be
considered. If we again start from one particular source wire,
we first have to determine the scattered fields at the source
wire itself. In this case source and observation wire coincide.
A second part of the calculations consists in determining the
scattered fields at an observation wire not coinciding with
the source wire. This observation wire can be located either
inside the same layer as the source wire or in a different
layer. We will not go into detail at this point. Starting from
the spectral-domain expressions (11), the scattering problem
can be solved in the spectral domain by using a TE-TM
mode decomposition. We refer the reader to [7] and [11] for
additional details on the method. Indicating the layer in
which an observation wire is located as layer p, the longitudi-
nal scattered fields take the following general form inside
that layer:

E¥,(ky,z)=T(k,)exp[~T,(z - 2,)]
+U(k,)exp [I‘p(z - zo)]
Hxs?p(kw z)= V(ky)exP [ ~I(z - 20)]

+W(k,)exp[L,(z - z,)] (19)

where z, is indicated in Fig. 2. Detailed calculations for T,
U, V, and W are given in [12]. In what follows we will simply
assume that they are known functions of the spectral variable
k, and of z. The scattered fields at the surface of the
observation wire can be written as the following Fourier
series:

n=+ow
Escp(ro)—- Z sexP(jn¢0)
n=-+o
cp(ro) = Z SCXp(jnd’a) (20)
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Starting from (19), the values of the Fourier coefficients turn
out to be

+ o ,
G, = Jn(ypao)f_ exp(—jk,¥,)

k )n/Z

[T(k |

I,+k

n/2
r y
+U(ky)( T %, ) }dky

(21)
and

+o )
Hr(t),s = Jn(ypao)f_ eXp(—]kyyo)

n/2

~k,
AV (k,)(=1) (F Tk,

T,+k,\"

P y
+ W(ky)( Lk, ) dk,,. (22)
We again refer to Fig. 2 for the value of y,. We draw

attention to the fact that G and H,  depend upon both
the unknown A4,, ; (eq. (7)) and B, s (eq (8)) coefficients.

VIII. SoLutioN OF THE EIGENPROBLEM

According to (2) the total field at each observation wire is
the sum of contributions from the incoming field from that
wire, from the incoming fields from source wires located in
the same layer as the observation wire, and from the scat-
tered fields caused by all the wires. Collecting results (9),
(16), and (20) leads to

n=+w (s=W
Emp(ro)_ Z ( Z (Bo,scn,er?)(Ytas)

A=-—-x\s=]

+Bp,,E,‘Z,ﬁG,?,s))exp(fn«bo) (23)

and

n=+ow (5=
i) = B 'L (snuDrsta)

n=—w =

+8, F2. + H,;{S)) exp(jnd,). (24)

The notation , and the subscript p express the fact that the
fields are calculated on the surface of an observation wire
located in layer p. In summing up over all wires, contribution
(9) has to be taken into account only once when source and
observation wire o coincide, and contribution (16) has to be
taken into account each time a source wire is located in the
same layer as a different observation wire. The total fields
(23) and (24) must satisfy the boundary condition on each
wire; ie., E°,(r,) must be zero and H°,(r,) must take the
original value (8) we started our calculatlons from. Applying
Galerkin’s method, we enforce these boundary conditions for
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a limited number of Fourier coefficients per wire. If we limit
the sums in (23) and (24) to |n| < N, we arrive at a set of
W(4N +2) equations in an equal number of unknowns A,
and B, ;, where n=0,+1,+2,---,+ N and s =1,2,-- ", W.
We have taken an equal number of coefficients on each wire.
The total set of equations has only nonzero solutions for
discrete eigenvalues B. After determining the eigenvalues,
the eigenvectors can be determined; i.c., the 4, ; and B, ;
values can be found.

IX. EQuIvALENT CIRCUIT REPRESENTATION OF THE
CoupPLED WIRES

A. Relevant Parameters of the Circuit Model

The coupled wire structure with W wires can be repre-
sented by an equivalent circuit consisting of W coupled
transmission lines with W propagating modes. Such a circuit
representation has also been proposed for coupled strip or
microstrip structures. A consistent circuit representation valid
up to very high frequencies was developed in [13] by two of
the present authors.

The coupled transmission line model for the W lowest
order modes of the structure is given by

j=w
= Zl [(z1;)/(Zy1,)[ Qs exp (- jB;x)
o
+ R;exp (jB;x)]
j=w
Ii(x)= .Zl [Itj/(leIlj)] [QjeXD(‘fB,x)
o

— R exp(jB,x)]. (25)
Here V; and I, i=1,2,---,W, represent the voltages and
currents on the coupled lines, and Z; is the impedance
associated with wire i due to eigenmode j. The B; are the
eigenvalues of the W lowest modes. The unknown but con-
stant coefficients Q, and R; are determined by the loading
and driving conditions of the lines. The 1mpedances can be

found by solving the following set of equations in the V]
{13]:

(26)

In (25) and (26) I;; represents the current in wire i due to
eigenmode . Each quantity P, represents the complex
power propagating through the structure in the longitudinal
direction associated with the electric field of mode j and the
magnetic field of mode k. Solving for the Vs leads to
V,;/1,;. The reader is referred to [13] for details.

B. Total Longitudinal Currents

The total longitudinal current I;; on wire i caused by
eigenmode j can be found from the integration of the ¢
component of the total magnetic field associated with mode
j along the circumference of the wire. Using Maxwell’s
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equations to express the ¢ component of the magnetic field
in terms of the longitudinal electric and magnetic field
components and their derivatives leads to the following final
result:

Iij=——2a,-ja)EA0,i/'y,~2. (27)
Here wire i is located in a layer with dielectric constant e
and has radius a,. A, is the zeroth-order Fourier coeffi-

cient defined in (7) associated with wire i and eigen-
mode J.

C. Total Propagated Complex Powers

In this subsection we will give a very brief account of the
power calculations. The purpose is the calculation of the
power terms P, defined in subsection A. Starting from the
projection of Poyntlng s vector on the longitudinal x direc-
tion, P, is found to be

Pe=(1/2) [ [{[EP x(HP) -uds  (28)

where the integration extends over the total cross section §
of the structure under consideration. The electric field in
(28) is the total electric field of eigenmode j, and the
magnetic field is the total magnetic field of eigenmode &, as
indicated by the subscripts. These fields are themselves su-
perpositions of the fields arising from the individual wires:

EP(r) = mf: ES,(r)

n=W
HE(r)= 1

n=1

H,(r). (29)

This means that P, can be rewritten in terms of elementary
contributions given by

)] u)ds  (30)

where m,n=1,2,---,W. This equation represents the power
associated with the electric field of wire m caused by mode j
and the magnetic field of wire n caused by mode j. The
power contributions P} themselves can be found as the
sum of partial power contrlbutlons propagated through each
layer of the medium. In order to calculate these different
partial power terms, the situation depicted in Fig. 4(a) must
be distinguished from that depicted in Fig. 4(b). In the first
case we consider two wires m and n in the same or in
different layers and a layer ! which differs from the layers in
which m and n are located. In that case the partial power
contribution from layer / to P}" can be found in the
spectral &, Fourier domain and emerges as a by-product of
the scattered field calculations which were outlined in Sec-
tion VIL. In the second case layer / coincides with either the
layer in which m is located or the one in which » is located.
The actual situation depicted in Fig, 4(b) is the one where
the three layers considered coincide. In this case it is no
longer advisable to directly integrate in the spectral domain

rr= a1/ f ([ Bt < i,
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wire n

layer |

O~

S R e
(a)

o)

Fig. 4. Wire configurations in the calculation of the propagated power.
(a) Two wires m and n located in a different layer. (b) Two wires in the
same layer and the associated division of the space into elementary cells.

owing to the complicated z dependence of one or both fields
in (30). This is because (11) is not valid aside a wire. The
alternative is to integrate in the spatial domain. Fig. 4(b)
shows a typical division of the space into elementary cells
used for these calculations. We first calculate the values of
the electric and magnetic fields in the space domain in the
center of gravity of each cell. From this the x component of
Poynting’s  vector in the center is known. Multiplying this
value by the cell surface yields the %" value for the cell. In
the y direction these cells extend only up to the point where
the power contribution of a cell is nonnegligible.

X. NumEericaL ExaMpLES

As a first example we select the single-wire configuration
shown in the inset of Fig. 5. The substrate is nonmagnetic
with €, = 4. The ratio of the radius a of the cylinder to the
thickness d of the substrate remains fixed at a/d = 0.25,
while d takes the value 3 mm. Fig. 5 shows the impedance
of the normalized propagation constant B /k,, where k,=
w /c, as a function of frequency. Fig. 5(a) gives results for
H/d=05; ie., the wire is located in the center of the
substrate. Fig. 5(b) gives the corresponding results for H/d
=1.5; i.e., the wire is located above the substrate at a height
which equals half the substrate thickness. This last configura-
tion can be used to model a bond wire. In both cases the
value of the propagation constant aiready differs quite sub-
stantially from its static value before the impedance starts
deviating in a considerable way from its quasi-TEM value.
From 10 GHz on, however, rapid changes occur for both
propagation constants and impedances. This change is espe-
cially marked for the configuration of Fig. 5(b). This is due to
the fact that dramatic changes take place in the field pat-
terns and the field becomes more and more confined in a

Bkoa  2(Q)
2.004 46
F45
1.981
44
1.961 43
42
1.947
F41
40 f(GHz)
1.92 T > >
1 10 100
(a)
By, ,26)
1.6 + 1500
1.51
I 1000
1.4
- —
I 500
1.31
HGHz)
0
1.2 T >
1 10 100
(b)

Fig. 5. (a) Circuit parameters of a the single-wire configuration in the
inset of the figure as a function of frequency (a/d =025, H/d=0.5,
d =3 mm). (b) Circuit parameters of a the single-wire configuration in
the inset of Fig. 5(a) as a function of frequency (a /d = 0.25, H/d = 1.5,
d =3 mm).

small region under the wire owing to the attraction of the
dielectric substrate.

As a second example, we select the two-wire configuration
shown in Fig. 6. The relative permittivity of the substrate is
€, =4 and the frequency is kept constant at 15 GHz. The
radius of the wires is 4 = 0.75 mm and the substrate thick-
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air

A (1

h

Fig. 6. Two-wire configuration.

2(Q
By, o
1.981 F100
B
1.961 even
80
1.941
z
even
1,921 60
Zodd
1.901
F40
ﬁodd
1.881
20 $8(mm)
1.86 g y >
0 5 10 15

Fig. 7. Circuit parameters for the two-wire configuration of Fig. 6 as a
function of the spacing s between the wires (a /d =025, H/d =075,
d=3 mm, f=15 GHz).

ness d = 3 mm. The height H takes the value H =2.25 mm.
Because of the symmetry of the configuration, the two fun-
damental modes are the fundamental even and an odd mode
of the structure. Fig. 7 shows the (normalized) propagation
constants Beye, and B,y and the impedances Z,., and Z 4
associated with these modes as a function of the distance
between the wires. This distance varies between 2 and 14
mm. Owing to the symmetry Z,,=Z, = Z 4y and Z;, = Z5,
= Zeyen For the definitions of Z,,, Z,, Z,,, and Z,, we
refer to [13]. For large distances, propagation constants and
impedances evolve toward their values for independent, non-
coupled wires. For the odd mode the propagation constant
increases with increasing distance because an increasing part
of the field lines is located between the wires and the ground
plane and a decreasing part between the wires. For the even
mode the repulsion between the wires decreases as s in-
creases, a larger part of the field is located in the air, and

ﬁ/ko Z(Q)
2.3-? - 400
2.2-. [ <00
2.14

- 200
2.0
19 - 100
1.8 w114
1 10 too f(GHz)

Fig. 8. Circuit parameters for the two-wire configuration of Fig. 6 as a
function of frequency (¢ = 0.3 mm, d = 3 mm, s = 3 mm, €, = 5).

air [

h
£ =4

iiyiizizddt?tdédz

Fig. 9. Three-wire configuration.

Beven decreases. However, for wires which are very close to
each other (s <3.5 mm), the repulsion becomes very high
and field lines start to get pushed into the air again. The
final result is that the B.,., curve exhibits a maximum.

As a third example we again select the configuration of
Fig. 6 but with different parameters. The relative permittivity
of the substrate now is €, =95. The radius of the wires is
a =0.3 mm, the substrate thickness is d =3 mm, the spacing
between the wires is s = 3 mm, and the distance between the
ground plane and the wires equals 2 =2.7 mm. This situa-
tion corresponds to one of the situations modeled in the
quasi-TEM limit in [9]. In this paper a charge simulation
method is used to obtain backward crosstalk data for cou-
pled wires. Fig. 8 shows the values for the propagation
constants and impedances as a function of frequency. In the
low-frequency limit o — 0, we compared our value for the
backward crosstalk constant K,, ie., K,=0.119 with the
one found in [9}, which is about 0.092. K, is defined as

Kh = [(Zeven)l/z_ (zodd)l/Z]/[(zeven)l/2+ (Zodd)l/Z] .
(31)

We believe that the difference is due to the better numerical
accuracy of the method presented in this paper.

As a last example, we select the configuration of Fig. 9.
The relative permittivity of the substrate is again €, = 4 and
the substrate thickness is d =3 mm. The three identical
wires have a radius a=0.75 mm, are located at a height
H =2.25 mm in the substrate, and have a separation of s =
2 mm. Fig. 10 shows the frequency dependence of the
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Fig. 10. Propagation constants for the three-wire configuration of Fig.
9 as a function of frequency (¢ = 0.75 mm, d =3 mm, s =2 mm, €, = 4).

normalized propagation constants B;, B,, and B; of the
so-called first even, second even, and first odd modes. The
impedance matrix, as defined in [13], at 1 GHz is given by

26.10  9.839  26.10
[Zl-j] =|162.4 61.235 1624 Q. (32)
38.00

38.00 3.3-10°

XI. CoNCLUSION

In this paper we extended the full-wave analysis for a
single wire in a double-layered conductor-backed medium to
include not only the propagation constant as a function of
frequency but also the impedance as a function of frequency.
The analysis was also extended to cover coupled wires and is
in fact suited for a multiwire configuration although numeri-
cal results were restricted to two wires. The method is also
capable of handling a multilayered medium. As the defini-
tion of the impedances is based on the power-current for-
mulation, it was necessary to determine the powers and
cross-powers propagated by the relevant modes in order to

obtain the impedances as a function of frequency. A knowl-

edge of propagation constants, total longitudinal currents,

and impedances allows one to obtain a complete equivalent

circuit in terms of a {coupled) transmission line network.
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